

www.astesj.com 623

Data Error Detection and Recovery in Embedded Systems: a Literature Review

Venu Babu Thati*1, Jens Vankeirsbilck1, Jeroen Boydens1, Davy Pissoort2
1Reliability in Mechatronics and ICT, Department of Computer Science, KU Leuven, 8200 Brugge, Belgium
2Reliability in Mechatronics and ICT, Department of Electrical Engineering, KU Leuven, 8200 Brugge, Belgium

A R T I C L E I N F O A B S T R A C T
Article history:
Received :05 April, 2017
Accepted :11 May, 2017
Online: 04 June, 2017

 This paper presents a literature review on data flow error detection and recovery
techniques in embedded systems. In recent years, embedded systems are being used more
and more in an enormous number of applications from small mobile device to big medical
devices. At the same time, it is becoming important for embedded developers to make
embedded systems fault-tolerant. To make embedded systems fault-tolerant, error detection
and recovery mechanisms are effective techniques to take into consideration. Fault
tolerance can be achieved by using both hardware and software techniques. This literature
review focuses on software-based techniques since hardware-based techniques need extra
hardware and are an extra investment in cost per product. Whereas, software-based
techniques needed no or limited hardware. A review on various existing data flow error
detection and error recovery techniques is given along with their strengths and weaknesses.
Such an information is useful to identify the better techniques among the others.

Keywords:
Data flow errors
Error detection
Error recovery
Reliability
Embedded systems

1. Introduction

In general, a critical aspect of any computer system is its
reliability. Computers are expected to perform tasks not only
quickly, but also correctly [1]. Recent trends in embedded systems
attract industries to use them more and more in day-to-day life for
an increasing number of applications. Application areas include,
but are not limited to, mechatronic industries, medical equipment,
smart energy consumers, mobility. Reduced size and reduced
supply voltage make systems more susceptible to disturbances.
Since there are more systems in use and the environment becomes
more harsh, a system failure or a system crash is more likely to
occur. A system failure could lead to serious consequences such as
human injury, environment pollution and a huge amount of money
loss for industries [2].

The rise in usage of electronics under harsh conditions
significantly increases the probability of all kinds of disturbances
from the environment. Such disturbances are glitches,
electromagnetic interference, temperature variations, etc. [3–6]. It
is proven that decreasing the size and supply voltage of the
components in circuits and increasing their complexity leads to
less reliable systems [7]. The corresponding systems are
susceptible to soft errors (bit flips) which are typically transient.
Transient faults do not cause any permanent physical damage and
can be restored by overwriting the introduced bit flip or by a
system restart. Still these faults are categorized as systematic faults

since given the exact same circumstances these faults will re-
appear in exactly the same way. Because the environment changes,
transient faults don’t occur continuously, unlike design and
manufacturing faults [1,8,9].

Errors in embedded systems can cause unusual behavior and
degrade systems integrity and reliability [7]. A number of
hardware and software techniques have been developed to make
embedded systems fault-tolerant against transient faults [10,11].
Fault tolerance is a two step process. The first step is fault
detection, indicating that somewhere in the system fault has
occurred. The second step in the process is fault recovery, restoring
the system from fault state to the normal state [12].

Today, fault tolerance is mainly achieved via hardware
solutions. Such hardware-based solutions are hardware
redundancy approaches to meet the requirements of the reliability.
Such hardware redundancy techniques are expensive since they
have to be implemented on every product produced. A commonly
used hardware-based technique for error detection in embedded
systems is N-modular redundancy. This technique uses N (N>2)
parallel modules for comparing the original and redundant process
results. This hardware redundancy technique introduces
a 100* (N- 1)% performance and memory overhead but does
achieve a fault coverage of 100% [12,13]. To reduce the overheads
in hardware-based fault tolerance techniques different software-
based redundant techniques have been proposed and
implemented [12,13]. Such software solutions would lead to a
more cost-efficient solution in many situations. Due to its

ASTESJ

ISSN: 2415-6698

*Venu Babu Thati, KU Leuven; Spoorwegstraat 25; 8200 Brugge, Belgium
Contact No: +32 (50)664805 & venubabu.thati@kuleuven.be

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com

Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj020380

http://www.astesj.com/
tel:+32%2050%2066%2048%2005
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020380

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 624

flexibility and cost, software-based solutions are used in a number
of applications. Software redundancy increases the system’s
reliability but requires extra memory space and processing time to
execute redundant instructions [15]. A number of software-based
data error detection and recovery techniques have been proposed
and implemented in literature for fault-tolerant embedded
systems [1,7,8,12–22].

According to recent studies, soft errors are one of the primary
sources of failure in embedded systems [7,16,23–25]. These soft
errors (bit flips) may further affect the system during program
execution, leading to a faulty system. Such bit flips have an effect
on data flow or control flow of the program. Generally, data flow
errors lead to corruption of variables in the program causing a
wrong intermediate or output result. In contrast, control flow errors
lead to a jump in the program execution order [26–29]. This review
paper focuses on various data flow error detection and recovery
techniques existing in literature to make embedded systems fault-
tolerant against bit flips. Since a number of data error detection and
recovery techniques exist in literature, it is important to review and
identify the strengths and weaknesses of each of these techniques
for a fault-tolerant embedded system. Figure 1 gives an overview
of the software-based data protection techniques that will be
discussed in this paper.

The remainder of this paper is organized as follows: Section 2
describes and reviews the different data flow error detection
techniques. Section 3 describes and reviews the different error
recovery techniques. Section 4 provides future work plans and
Section 5 concludes this paper.

SWIFT

Data error
detection

Checkpointing

Error recovery

Duplication

Full
duplication

Selective
duplication Rollback Roll-

forward

• EDDI
• EDDDDI
• Software

approach

• CBD
• CPD
• SEDSR
• Overhead

reduction
• GA
• Shoestring

Figure 1. Overview of software-based data protection techniques.

2. Related Work

Soft errors usually occur due to heavy radiation, power supply
distortion, environmental temperature fluctuations, and other fac-
tors. The introduced soft errors can corrupt the data of the program
in execution. To counter this data corruption, a number of data
flow error detection and recovery techniques have been proposed
in literature [1,7,8,12–17,19–21]. In previous work [4], we listed
several data flow error detection techniques and discussed their re-
ported results. The contribution of this review paper is 1) that we
list not only detection techniques but also recovery techniques, 2)
that we discuss the considered techniques more in depth and 3) that
we give several strengths and weaknesses per technique. The pro-
vided strengths and weaknesses have been determined based on
the technique’s inner working and reported results. By looking at

the strengths and weaknesses of each of the technique presented
under error detection and error recovery, one can easily identify
the better technique immediately with clear reasoning.

3. Data Flow Error Detection

This section presents and reviews various existing data flow
error detection techniques such as EDDI (Error Detection by
Duplicated Instructions), ED4I (Error Detection by Diverse Data
and Duplicated Instructions), Software approach, CBD (Critical
Block Duplication), CPD (Critical Path Duplication), SEDSR
(Soft Error Detection using Software Redundancy), Checking
rules, GA (Genetic Algorithm) and Shoestring approach. Strengths
and weaknesses of each of these techniques will be discussed. All
of the presented data flow error detection techniques are software-
based.

Duplication is the basic mechanism involved in data error
detection techniques [4]. A number of data flow error detection
techniques have been developed based on a unique duplication
mechanism for better fault coverage or lower overhead in terms of
memory consumption. The duplication can be applied at various
levels such as a full duplication and selective
duplication [1,4,7,8,12–15,17,18]. Full duplication techniques and
selective code duplication techniques are discussed in Sections 2.1
and 2.2 respectively.

In order to evaluate the data error detection techniques, authors
of the corresponding techniques [1,7,12–17] have chosen various
case studies for the experiments. Bubble sort, quicksort, insertion
sort, and matrix multiplication are the most used case studies in
previous research in this field [13,16,17,26,30]. Of course, some
of the techniques uses other case studies such as FFT, differential
equation solver, mean, vortex, etc. Further, a fault injection
mechanism has been used to inject the faults in hardened case
studies for validation. All of the provided information in Table 1
and Table 3 such as error detection techniques, case studies,
injected faults, detected faults, fault coverage, performance
overhead, and memory overhead are considered from
literature [1,7,12 – 17]. Fault coverage, performance overhead,
and memory overhead are defined in (1), (2), and (3).

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 (1)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

=
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 (2)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

=
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (3)

3.1. Full Duplication

This section presents various existing full duplication
techniques for data flow error detection. The basic mechanism
involved in all of the full duplication techniques is duplicating the
entire code and comparing the original and duplicated output to
detect errors. Full code duplication has been performed in different
ways for different techniques as in [7,13,15,31].

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 625

Table 1. Representation of error detection technique with case studies, case studies
length, injected faults and detected faults from literature [1,7,12–17].

Error detection by duplicated instructions

EDDI is one of the most often used error detection techniques
in research [12]. The EDDI technique states three different
instructions for program execution: a master instruction (MI), a
shadow instruction (SI), and a comparison instruction (CI) [13], as
shown in Figure 2b. Figure 2a represents two different master
instructions. The master instruction is the original instruction of
the source code, while the shadow instruction is the duplicated
instruction added to the source code. Validation of correct
operation is accomplished by comparing registers and memory
values of master instructions and those of shadow instructions. In
Figure 2b, first three instructions refer to MI, SI, and CI. If there is
any mismatch between the master and shadow output, the
comparison instruction reports an error. To achieve the highest
fault detection ratio, EDDI is applied at the assembly level [8,13].
In order to evaluate the effectiveness of the proposed technique,
quicksort, matrix multiplication, insertion sort, and FFT were used
as case studies.

 ADD R3, R1, R2
 SUB R4, R3, R2

ADD R3, R1, R2
ADD R23, R21, R22
CMP R3, R23, gotoError
SUB R4, R3, R2
SUB R24, R23, R22
CMP R4, R24, gotoError

a) Original instructions b) Transformed instructions

Figure 2. Master, shadow, and comparison instructions representation.

Strengths
With the final computation results from MI and SI in the

program, the error can be detected by placing a comparison
instruction. The EDDI technique achieves nearly 98.8% [13,16] of

fault coverage by placing a redundant comparison instruction after
each MI and SI in the program. The remaining percentage of
undetected errors comes from the faults that create an infinite loop
in the program. EDDI is one of the techniques that has highest fault
coverage in this field.

Weaknesses
Since it is a full duplication technique, all of the instructions

presented in the program need to be duplicated. Next to the original
(MI) and duplicated (SI) instructions, a comparison instruction has
to be placed to report errors. Since each of the original instructions
is converted to three instructions, so performance and memory
overhead of EDDI are 104.7% and 200% [13,16], as shown in
Table 3.

Error detection by diverse data and duplicated instructions

ED4I detects errors by executing two different programs, the
original and a transformed (duplicated) program, and comparing
their results. The comparison gives an error if the original and
duplicated programs do not lead to the same result. The
transformation of ED4I technique representation is shown in
Figure 3, where 𝑥𝑥′ = 𝑘𝑘. 𝑥𝑥 for integer numbers is used. Where k is
the fault detection probability of the program, x is the original
program and 𝒙𝒙′ is the transformed program [7]. In the presented
ED4I technique, the optimum value for k that maximizes the fault
coverage probability is calculated. After performing the
validations with case studies, the authors identified that k = -2 is
the optimum value to have a maximum fault detection. EDDI and
ED4I techniques are comparable because of their common case
stuides.

a = 1;
b = 5;

 i = 0;
 c = 0;

i < 5

c = a + i * b;
i = i + 1;

i = 2 * c;

a = -2;
 b = -10;

 i = 0;
 c = 0;

i > -10

c = -2a + -2(i * b);
i = -2i + (-2);

i = -2(2 * c);

K = -2

False False

True True

a) Original program b) Transformed program

Figure 3. Original and transformed program with k = -2.

Strengths
The ED4I technique presents a transformation algorithm for

the program that transforms an original program (integers or
floating point numbers) x to a new program 𝒙𝒙′ with diverse data.
This technique achieves a 96.1% [7,16] fault coverage when using
the optimum value for k. This result is approximately equal to that
of the EDDI technique, as shown in Table 3.

Weaknesses
As in EDDI, ED4I also needs to duplicate the entire original

program with diverse data. This technique requires a number of
redundant instructions for duplication and comparison, which
causes an increment in overhead. The performance and memory
overhead imposed by this technique is nearly 126.6%

Error
detection
technique

Case studies
used

Case studies
length

(in lines)

Injected
faults

Detected
faults

EDDI

Insertion sort
Quicksort

Matrix mul.

30
36
47

500
500
500

495
491
496

ED4I

Quick sort
Matrix mul.

Insertion sort

47
36
30

500
500
500

479
481
482

Software
approach

Constant mod-
ulus algorithm

20

19520

19520

CBD

Bubble sort
Matrix mul.
Quick sort

25
36
47

784
784
784

615
561
553

CPD

Differential
equation solver

30

784

575

SEDSR

Bubble sort
Matrix mul.
Quick sort

25
36
47

1000
1000
1000

950
940
956

Checking
rules

Bubble sort
Matrix mul.
Dijkstra’s

25
36
19

10000
10000
10000

9560
9600
9350

GA

Bubble sort
Regression
Quicksort

25
23
47

40000
40000
40000

32800
32000
33600

Shoestring

Vortex
Crafty
Gap

SPEC2000
benchmark

suit

12000
12000
12000

11050
6000
9000

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 626

and 160% [16], as given in Table 3. ED4I transformation is only
good for either integers or floating point numbers, but not for both.
For example, if a program has mixed data types such as floating
point numbers and integers, in that case, we need multiple
transformations with different k values for each type. The
drawback of such a multiple transformations is that it will
introduce a more performance and memory overhead.

Detecting soft errors by a pure software approach

The error detection mechanism in the proposed technique is
based on a set of transformation rules. These transformation rules
are classified into three basic groups: 1) error affecting data, 2)
error affecting basic instructions, and 3) error affecting control
instructions to detect the errors [31]. Error affecting data rules are
used to detect data flow errors, whereas error affecting basic and
control instructions rules are used for control flow error detection.
In error affecting data, the motive is to identify and define a
dependency relationship between variables of the program.
Furtherly, classifying them into intermediary variables and final
variables based on their role in the program [31]. From Figure 4a,
variables x, y, and z are classified as intermediary variables, which
are used for other variables operation. Whereas variable P is
classified as a final variable, which does not participate in any
operations. After each write operation to the final variables, both
original and duplicated values are compared for a consistency
check, if any inconsistency is identified an error detection
procedure is activated. By applying the different transformation
rules to each of the original variables, this technique is able to
detect errors that occur in data, basic instructions, and control
instructions.

x = z + y

P = x + y*2

 x1 = z1 + y1
 x2 = z2 + y2

P1 = x1 + y1*2
P2 = x2 + y2*2

P1 == P2

Error

True False

a) Original program b) Transformed program

Figure 4. Transformations rules targeting error affecting data in a sample program
[31].

Strengths
The presented technique is mainly based on a set of

transformation rules. Error affecting data rules are used to detect
data flow errors with full duplication scheme. Fault coverage
achieved with this technique is 100% [31], because of duplicating
the entire program and comparison after each write operation to
the final variables. Software approach is one of the techniques that
has highest fault coverage in this field.

Weaknesses
Usage of more redundant instruction for duplication and the

comparison lead to increase in overhead. The appeared

performance and memory overhead in this technique are 244%
and 362% [31], as shown in Table 3.

3.2. Selective Duplication

This section presents a number of existing selective code
duplication techniques for data flow error detection. The main
difference with full duplication techniques is that selective
duplication techniques first analyze the program to detect the most
important parts and only duplicate those important parts. Defining
and identifying the important part of a program can be done in
different ways, leading to different techniques [1,12,14–17].

Error detection by critical block duplication

The presented selective code duplication technique is named
CBD. The CBD technique follows three different steps to detect
data flow errors. The first step is, to identify the critical blocks in
the control flow graph. These critical blocks are the most
vulnerable in the program because its output has an influence on
the other blocks. The second step is to duplicate the identified
critical blocks. The final step is to compare the original and
duplicated critical blocks to detect errors. The authors of this
proposed technique introduced a simple way for critical block
detection from the example of control flow graph, as shown in
Figure 5. A block that has the most number of outgoing edges to
the other blocks in the control flow graph is considered, as a
critical block [12]. In Figure 5, block 1, has three outgoing edges
to the other blocks, whereas others have less than three. In this
case, the highlighted block 1 is identified as a critical block.
Furthermore, the critical block, block 1, is duplicated and
compared to the original block. If any mismatch is identified
between the original and duplicated instructions, it will report an
error.

Strengths
In Section 2.1, we have reviewed various full duplication

techniques and their advances in fault coverage. But, because of
increased performance and memory overhead, it seems that full
code duplication is not a good option. Limiting the code
duplication scope is useful in real-time and general purpose
applications where cost is the primary factor. In CBD, performance
and memory overhead are decreased because they use less
redundant instructions for duplication and comparison. The
appeared performance and memory overhead in this technique
are 50% and 101.6% [12], as shown in Table 3.

Weaknesses
With regards to CBD, redundant instructions are inserted only

in the critical block, so there is a possibility of missing undetected
errors in other blocks leads to a reduction in fault coverage. The
achieved fault coverage with CBD technique is only 73.5% [12].
Another major drawback of this technique is that it is a compiler
and/or case study dependent and could just act as a full duplication
technique. For example, let's consider a control flow graph with 8
basic blocks, 5 of them have two outgoing branches and other 3
have only one. Since 5 of them are critical blocks, they are
expected to have at least 80% of the code. Such a control flow
graph with CBD approach is duplicating 80% of the original
program.

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 627

1

2 5

43

Figure 5. Example of control flow graph with CBD [12].

Error detection by critical path duplication

In this CPD technique, the data flow graph is used instead of
using the control flow graph. The data flow graph is used to derive
the interconnection of variables and their dependencies and effects
on each other. In a data flow graph example, nodes represent the
operands and vertices represent the variables of the program, as
shown in Figure 6 [14]. The basic idea behind this technique is to
identify and duplicate the critical path in the data flow graph. The
first step is, to identify the critical path in the data flow graph. The
authors of [14,17,32] who proposed CPD technique introduced a
simple principle for critical path detection. The longest path in the
data flow graph is considered as a critical path because of the great
possibility of error occurrence on that long path. According to the
principle proposed by the authors, the longest path in the data flow
graph is identified and kept in the box, as shown in Figure 6. Next,
the identified critical path will be duplicated and the comparison
instructions will be placed after each write operation in the final
variables. If the final variables in the program are not equal to each
other, it reports an error.

1 2 6 9

* * -

+
+

10

X

Y

7

128

14

Figure 6. Example of data flow graph with CPD [14].

Strengths
With regard to CPD, only instructions presented in the critical

path are duplicated to detect the data flow errors with minimum
overhead. In CPD, performance and memory overhead are
decreased because they use less redundant instructions for
duplication and comparison. The appeared performance and
memory overhead in CPD are 60% and 103% [14], as shown in
Table 3.

Weaknesses
As far as CPD is concerned, redundant instructions are inserted

only in the critical path, so there is a possibility of missing out on
the undetected errors in the other small paths in the data flow
graph. This lead to reduce in a fault coverage. Fault coverage
achieved with CPD is only 73.3% [14]. In CPD, creating a data
flow graph is much harder in assembly than C and C++. It is also
difficult to perform the duplication and maintain the control flow
graph in order when only data flow graph is given.

Soft error detection using software redundancy

This technique is named SEDSR. In this technique, the critical
block is duplicated as in CBD. As in [12,17], the critical block is
the block with the most number of outgoing edges to the other
blocks in the control flow graph, as shown in Figure 5. In this
technique, critical block variables are further divided into two
categories: (1) middle variables: important in computing the other
variables and (2) final variables: they don’t perform any
computations [17]. In the critical block, a redundant comparison
instruction is placed after the final variables to compare these
parameters in original and duplicated blocks. Figure 7a represents
the sample (original) program of the critical block and variables
a, b, and c are considered as the middle variables and d is
considered as the final variable. Figure 7b is the duplicated version
of a sample program with comparison instruction for the critical
block. If any mismatch between original and duplicated variables
is identified during the comparison, an error is reported and the
program execution is halted. SEDSR and CBD techniques are
comparable because of their common case studies.

c = f(b)

a = b + c

d = b-a*c

c1 = f(b1)
c2 = f(b2)

a1 = b1 + c1
a2 = b2 + c2

d1 = b1-a1*c1
d2 = b2-a2*c2

If(d1 != d2)
Error

a) Sample program b) Duplicated program

Figure 7. Sample program of critical block with duplication and comparison [17].

Strengths
SEDSR is one of the critical block duplication techniques. In

comparison with CBD, in this technique, the critical block
variables are not directly duplicated but furtherly classified into
two types such as middle variables and final variables. In SEDSR,
by placing a comparison instruction after writing to the classified
final variables detect a lot of errors. Fault coverage achieved with
this technique is 94.85% [17], which is increased in comparison to
the CBD, as shown in Table 3.

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 628

Weaknesses
As in CBD, this technique also considers only the critical block

with further improvements in the process over CBD, as mentioned
in strengths. At the same time, performance and memory overhead
are increased because of placing extra comparison instructions.
The imposed performance and memory overhead in SEDSR
are 112.3% and 134.6% [17], they are increased in comparison to
the CBD. Since SEDSR has a similar kind of duplication
mechanism as in CBD, this technique is also a compiler and/or
case study dependent and could just act as a full duplication.

Overhead reduction in data- flow software-based fault toler-
ance techniques

The aim of this technique is to provide low overhead with the
same level of reliability as in EDDI, ED4I , and Software
approach [7,13,31]. This technique provides an alternative
implementation of software-based techniques. The alternative
overcomes the drawback of the massive overhead introduced by
other techniques for soft error detection. In the presented
technique, a set of rules for the data protection are explained as
shown in Table 2 such as, 1) global rules: each register used in the
program should have its replica, 2) duplication rules: (a)
duplicating all instructions except branches, (b) duplicating all
instructions except branches and stores, and 3) checking rules: to
compare the values of a register with its replica at different
positions [15]. Such rules are applied to various methods with the
choice to detect the errors. Table 2 explains the purpose of each
rule. Checking rules (overhead reduction), EDDI, and ED4I
techniques are comparable because of their common case studies.

Table 2. Checking rules description [15].

Strengths
Different methods are implemented in this technique by

considering the choice of duplication and checking rules, as shown
in Table 2. A couple of methods have equal fault coverage with
changes in overhead. Selecting the right checking rules is
important because they have an influence on fault coverage and
overhead. The method with highest fault coverage and lower
overheads is considered as the best method. In this technique, the
best method has a fault coverage of 95% with performance and
memory overhead of 72.3% and 82% [15]. The appeared
performance and memory overhead in this technique are decreased
in comparison to the EDDI, and ED4I techniques, as shown in
Table 3.

Weaknesses
Compared to full duplication error detection techniques such

as EDDI, and ED4I , this technique has slightly reduced fault
coverage. Fault coverage achieved with this technique is 95%
because of using less number of redundant instructions with the
choice of checking rules in comparison to the EDDI and
ED4I techniques.

Method for hardening a program against soft error using ge-
netic algorithm

In this technique, GA has been used to identify the most
vulnerable blocks of the program through input data [16]. The
identified vulnerable blocks have to be strengthened against errors
through duplication and comparison. The proposed technique
follows three different steps to detect errors as shown in Figure 8.
Those three steps are, 1) preprocessing of the input program: with
regard to the results obtained from the related researchers such
as [33,34], a considerable number of program instructions does not
have any effect on the program output results. This step includes a
method called program slicing [35], which eliminates some of
those instructions that do not have an impact on the program output
results. The first step improves the speed of proposed GA in the
second step, 2) identifying the most vulnerable blocks: GA has
been proposed to identify vulnerable blocks. GA takes the source
code of the program as an input to find out the smallest subset of
the basic blocks which are more vulnerable. The most vulnerable
blocks are identified based on initial population, selection,
crossover, mutation, evaluation, and replacement processes
introduced in GA, as clearly explained in [16], and 3)
strengthening the identified vulnerable blocks: based on the
required level of reliability, most vulnerable blocks in the program
are strengthened against errors [16], is shown in Figure 8.

Preprocessing of
the input
program
(Slicing)

Identifying the
vulnerable

blocks by the
GA

Strengthening
the identified

vulnerable
blocks

Sliced
 program

Vulnerable
blocks

 of the program

Step 1 Step 2 Step 3

Input
data

Original
Program
C/C++

Figure 8. Representation of proposed method [16].

Strengths
Due to initial preprocessing and then selective vulnerable block

duplication and comparison, the presented technique uses a less
number of redundant instructions. Usage of a less number of
redundant instructions decreases its performance and memory
overhead. Performance and memory overhead presented in this
technique are 24.3% and 60.3% [16].

Weaknesses
As other selective duplication techniques presented in this

section, this technique considers only the most vulnerable blocks
in the program for duplication. By duplicating only the vulnerable
blocks in the program, most of the faults can be detected but not
all. There is a possibility of undetected errors in the other normal
blocks which lead to a reduction in fault coverage. Fault coverage
achieved with this is technique is 82% [16].

Shoestring: Probabilistic soft error reliability

In the program, any instruction that can potentially influence
global memory is considered as a high-value instruction [1]. In
fact, if it consumes a wrong input, they are likely to produce
outputs that result in user-visible corrupted results. In this

Global rules (Valid for all techniques)
G1 Each register used in the program has a spare register as a

replica
Duplicated rules Performing the same operation on the registers replica

D1 All instructions except branches
D2 All instructions except branches and stores

Checking rules Compare the value of a register with its replica
C1 Before each read on the register
C2 After each write on the register
C3 Before loads, the register that contains the address
C4 Before stores, the register that contains the data
C5 Before stores, the register that contains the address
C6 Before branches

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 629

technique, high-value instructions are defined as the most
vulnerable instructions and will have a huge impact on program
output. Shoestring technique contributes in different issues for
detecting the errors. Such issues are: 1) a transparent software
solution for addressing soft errors, 2) a new reliability-aware
compiler analysis, and 3) a selective instruction duplication that
leverages compiler to identify and duplicate a small subset of
vulnerable instructions [1]. Code duplication begins by selecting a
single high-value instruction, from the set of all high-value
instructions in the program. The selected single high-value
instruction then proceeds to duplicate and then compare with
comparison instruction. Duplication process is terminated when no
more producers exist for duplication or the producer is already
duplicated. Then the inserted comparison instructions are used for
checking the errors. In Figure 9, the shaded parts represent the
code duplication chains and the dashed circles indicate high-value
instructions.

Strengths
Shoestring is a minimally invasive software solution, which

results in very low overhead. Since duplicating and comparing
only high-valued instructions, less number of redundant
instructions are used which leads to decrease in overhead.
Performance and memory overhead introduced in this technique
are 20.16% and 40% [1], these are better than any other techniques
in this field.

Weaknesses
Shoestring approach initially identifies the most unsafe

instructions, as high-value instructions. Only duplicating and
comparing the high-valued instructions, produce better overhead.
At the same time, fault coverage is reduced because of possible
undetected errors in the unduplicated instructions. Fault coverage
achieved with this technique is 80.6 [1]%.

S

43

7

S

5

8

S

2

1

6

Figure 9. Example of data flow graph illustrating shoestrings code duplication

chains [1].

4. Error Recovery

Error recovery techniques have been implemented to recover
from the identified errors to keep systems in an error-free state with
minimum overhead. Error recovery is generally based on the
checkpointing concept [19–21,36]. Checkpoints are saved at

regular intervals in the program based on the program execution
behavior.

This section presents and reviews general checkpointing
techniques for rollback error recovery and roll-forward error
recovery. Strengths and weaknesses of rollback and roll-forward
error recovery policies with checkpointing techniques are
discussed.

4.1. Rollback Error Recovery

Rollback error recovery is one of the most used error recovery
policies to recover the errors by using the checkpointing
techniques in embedded systems. Bashiri, et al. propose a
checkpointing technique for rollback error recovery. In rollback
error recovery, in the case of an error, the processor state is restored
to the error-free state with lower overhead [21]. In general, cost,
performance, and memory overhead are primary factors for any
error recovery technique.

The primary step for developing an error recovery technique is
defining the correct error model. In [21], the proposed technique is
based on control flow error model. During compilation time, the
program is partitioned into basic blocks. The basic block is a set of
instructions in a program without a jump instruction. Thereafter,
an error detection mechanism needs to be added to the basic blocks
presented in the program. Figure 10 shows the example of placing
checkpoints in the control flow graph of the program. Usually, the
checkpoint is stored in memory for rolling back the system with an
immediate effect whenever an error is detected. Such a memory
must be a fault-tolerant memory. The checkpoint contains the
content of the registers, stack pointer and memory locations like
stack region, constants, and variables [21]. For the considered
benchmark programs such as bubble sort, matrix multiplication,
and linked list copy, a checkpoint capturing is inserted to each of
the basic blocks individually.

For example, a control flow graph is constructed with six
blocks based on the program. Then checkpoints are added to the
blocks based on the program execution order as shown in
Figure 10. Since there will be a possibility of error occurrence
before the first checkpoint location, it is mandatory to put a
checkpoint at the beginning of the program. Remaining
checkpoints are placed at the locations based on the program's
vulnerability. In Figure 10, locations of the second and third
checkpoints contain the vulnerable information. During the
program execution time, whenever an error is detected, a detection
mechanism informs the recovery routine and recovery routine
recovers the error from the previously restored checkpoint. To
evaluate the presented checkpointing technique, a pre-processor
has been implemented that selects and adds the checkpoints to
blocks [21].

Strengths
Bashiri, et.al, proposes a general checkpointing technique for

rollback error recovery to recover from detected errors. The
advantage of rollback error recovery is that if the error is detected,
the processor state is restored into error free state without using the
spare processor. The number of redundant instructions needed for
rollback error recovery is very low. In the presented checkpointing
technique for rollback error recovery, appeared memory overhead
is low and also a cost efficient.

Weaknesses
In the presented checkpointing technique for rollback error

recovery, whenever an error is detected, immediately the system

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 630

must rollback to its previous checkpoint of the corresponding
program. Due to the fact that considerable time overhead is the
main drawback of the rollback error recovery, as shown in Table 4.
This technique is not fit for the typical time critical applications.

1

3

2

4

6

5

First checkpoint capturing

Second checkpoint
capturing

Third checkpoint capturing
Figure 10. Periodic checkpointing representation in control flow graph.

4.2. Roll-Forward Error Recovery

Roll-forward error recovery is another error recovery policy to
recover the errors. Roll-forward schemes are developed to increase
the possibility that a given process completes within a given time.
In that case, a couple of roll-forward schemes uses a spare
processor for removing the rollback to save the time. At the same
time, in time critical applications, redundancy is an important
factor to consider because of cost, power, memory, and other
factors. However, both schemes for roll-forward recovery with and
without spare processor are discussed in this section.

Roll-forward recovery with dynamic replication checks (with
spare processor)

The presented roll-forward recovery scheme uses dynamic rep-
lication checks to detect errors and is named RFR-RC (Roll-For-
ward Recovery with dynamic Replication Checks). This scheme is
organized based on the isolated checkpoint intervals. For any iso-
lated checkpoint intervals, a task is executed on two independent
processors such as processor P1 and processor P2 as shown in Fig-
ure 11 [20]. In the presented scheme, at every checkpoint, the
duplicated task records its state in the storage and the recorded state
is forwarded to the checkpoint processor. Thereafter, at the end of
the checkpoint interval, the checkpoint processor compares the two
states from the processors. If the compared checkpoint states
match with each other, the checkpoint will be committed and both
the processors P1 and P2 continue their executions into the next
checkpoint interval [20,21]. During the comparison, if any
mismatch is detected, a validation step starts immediately. During
the validation process, processors P1 and P2 continue their
execution. At the same time, a spare processor is occupied to retry
the last checkpoint interval using the previously committed
checkpoint. Once the spare processor is ready with its process, the
state is compared with the previous states of processors P1 and P2.
The faulty processor among two processors such as P1 and P2 will
be identified after this comparison. Then the identified faulty pro-
cessor state will be made identical to that of the other processor.
Now, both processors duplicating the task need to be in the correct

state. As from the assumption [20] of single independent faults, a
further validation process is not required.

Strengths
In the presented RFR-RC scheme, a spare processor is used to

save time. With an extra processor, there is no need of rolling back
to restore the system from error state. In RFR-RC, during the
validation, the spare processor is used to identify the faulty
processor and recovery action will be taken immediately.
Appeared time overhead in RFR-RC scheme is decreased in
comparison to the rollback scheme and RFR-BC scheme, as shown
in Table 4.

Weaknesses
Because of using a spare processor to avoid the rollback, the

cost is getting high. Memory overhead appeared in this technique
is increased in comparison to the rollback recovery scheme.

Processor P1

Processor P2

Copy state from
P1 to P2

Validation step

Isolated checkpoint intervals

Comparison

Comparison

Copy

Spare
processor

Different
checkpointsA fault

Figure 11. Roll-forward recovery in RFR-RC scheme [19,20].

Roll-forward recovery with behaviour-based checks (without
spare processor)

In order to avoid the rollback, self-checks have been inserted
to identify the faulty processors [20]. Such a self-detection
methods are behaviour-based checks, such as control flow
monitoring, detecting an illegal instruction, and memory
protection. In [20,37], a new scheme has been proposed and
implemented for roll-forward recovery named RFR-BC (Roll-
Forward Recovery with Behavior based Checks). The proposed
scheme uses a process pair approach to avoid the rollback to reduce
the time. The intuitive idea presented in this scheme is, whenever
an active task fails, the spare task becomes active to provide the
necessary services [20]. The information sending through the
active and spare task do not differ. However, information passing
through the spare task need to be verified by the acceptance test
before sending. Thereafter, the states of two processors
(processor1 and processor 2) are verified at the end of a checkpoint
interval to declare passing the test is committed, as shown in
Figure 12.

Basically, acceptance test for sending the information validates
a couple factors such as timing, coding, reasonableness, structural
and diagnostic checks [20,38]. In the presented scheme,
checkpointing is used for fault identification and roll-forward error

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 631

recovery. Whenever a faulty processor is located, then its state is
made identical to the checkpoint state of the error-free processor.
Because of this, both processors (processor1 and processor 2) will
be in the correct state at the beginning of the next checkpoint
interval. Figure 12 demonstrates the REF-BC scheme.

Strengths
RFR-BC scheme in roll-forward recovery does not need a

spare processor as in RFR-RC to avoid rollback. In the RFR (Roll-
Forward Recovery) schemes, the continuity of the executing
program will be maintained so that the recovery delay will be
removed [20,21]. The advantage of RFR-BC scheme is that time
overhead is decreased in comparison to the rollback scheme, as
shown in Table 4. It is also a more cost efficient solution compared
to RFR-RC because of no spare processor.

Table 3. Results of the presented data error detection techniques from literature
[1,7,12–17].

Table 4. Results of the presented error recovery techniques from
literature [19– 21,36].

Method Time overhead
Rollback recovery 31.1%
Roll-forward recovery (RFR-RC) 1.23%
Roll-forward recovery (RFR-BC) 2.08%

Weaknesses
In the RFR-BC, appointed self-check detection has an

inaccurate error coverage and can't detect certain types of faults
such as faults causing infinite looping. Time overhead with

RFR- BC scheme is increased in comparison with the RFR-RC
scheme for roll-forward recovery.

Processor P1

Processor P2

Copy state
from P1 to P2

Different
checkpointsA fault

(Pass tests and
commited)

Checkpoint intervals

Fail the test Pass the test

Figure 12. Roll-forward recovery in RFR-BC scheme [19,20].

Table 5. Strengths and weaknesses comparison of error detection methods.

Error
detection
technique

Case studies
used

Fault
coverage

(%)

Performance
overhead

(%)

Memory
overhead

(%)

EDDI
Insertion sort

Quicksort
Matrix mul.
(Average)

99
98.2
99.2

(98.8)

113.90
89.3
111.1

(104.7)

200
200
200

(200)

ED4I
Quicksort

Matrix mul.
Insertion sort

(Average)

96.4
95.9
96.2

(96.1)

110
133
137

(126.6)

164
170
146

(160)
Software
approach

Constant mod-
ulus algorithm

100

244

362

CBD

Bubble sort
Matrix mul.
Quicksort
(Average)

78.54
71.53
70.57
(73.5)

51
57
42

(50)

94
109
102

(101.6)

CPD
Differential

equation
solver

73.3

60

103

SEDSR

Bubble sort
Matrix mul.
Quicksort
(Average)

95.01
93.95
95.59

(94.85)

112
121
104

(112.3)

127
146
131

(134.6)

Checking
rules

Bubble sort
Matrix mul.
Dijkstra’s
(Average)

95.6
96

93.5
(95)

70
82
65

(72.3)

82
89
75

(82)

GA

Bubble sort
Regression
Quicksort
(Average)

82
80
84

(82)

23
24
26

(24.3)

64
57
60

(60.3)

Shoestring
Vortex
Crafty
Gap

(Average)

92
75
75

(80.6)

12
24

24.5
(20.16)

31
48
41

(40)

Error
detection
technique

Strengths Weaknesses

EDDI The EDDI technique achieves
high fault coverage by placing a
comparison instruction after
each MI and SI in the program.

Each of the original
instruction is converted into
three instructions, so
performance and memory
overhead is increased.

ED4I This technique achieves a high
fault coverage when using the
optimum value for k.

Good for either integers or
floating point numbers, but
not for both.

Software
approach

Fault coverage achieved with
this technique is very high
because of duplicating the entire
program.

More number of required
instructions for duplication
and comparison lead to
increase in overhead.

CBD Performance and memory
overhead are decreased because
they use less redundant
instructions for duplication

This technique is a compiler
and/or case study dependent
and could just act as a full
duplication technique.

CPD Due to less number of instruc-
tions required for duplication,
performance and memory over-
head is decreased.

In CPD, creating a data flow
graph is much harder in
assembly than C and C++.

SEDSR In SEDSR, by placing a
comparison instruction after
writing to the classified final
variables detect a lot of errors.

This technique is also a
compiler and/or case study
dependent and could just act
as a full duplication.

Checking
rules

The appeared performance and
memory overhead in this
technique are decreased in
comparison to the EDDI, and
ED4I techniques.

Fault coverage achieved with
this technique is reduced
because of using less number
of redundant instructions with
the choice of checking rules.

GA Because of selective vulnerable
block duplication, the presented
technique uses a less number of
redundant instructions.

There is a possibility of
undetected errors in the other
normal blocks which lead to a
reduction in fault coverage.

Shoestring By duplicating and comparing
only high-valued instructions,
leads to decrease in overhead.

Fault coverage is reduced
because of the possible
undetected errors in the
unduplicated instructions.

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 632

Table 6. Strengths and weaknesses comparison of error recovery methods.

5. Future Work

The strengths and weaknesses given in this paper for each tech-
nique were determined theoretically, by analyzing the technique
and determining what data flow errors they detect, which they ne-
glect and which overhead the techniques introduce.

To guide researchers and embedded systems engineers, we will
perform an experimental comparison of the mentioned techniques.
This experimental comparison will allow to evaluate the tech-
niques on the same base: same hardware, same case studies, and
same fault injection process. We’ll perform this comparison both
for data flow detection techniques and data flow recovery tech-
niques. The outcome of the experimental comparison will allow
other applicants of the techniques to quickly determine which ex-
isting technique is the best, in general or for their application.

Finally, we’ll use the gathered data from the experimental com-
parison to develop a technique that can detect and recover from
data flow errors, without introducing abnormal overhead.

6. Conclusions

This review paper lists and reviews various data flow error
detection and recovery techniques existing in literature in the field
of embedded systems. Each of the considered data error detection
and correction technique has been discussed in terms of strengths
and weaknesses. The discussion is summarized in Tables 5 and 6.

After thoroughly reviewing the strengths and weaknesses of
error detection techniques, we have found that some of the
techniques such as 𝐸𝐸𝐸𝐸4𝐼𝐼, EDDI and Software approach are good
for fault coverage but come with high overhead both in memory
and performances. On the other hand, some other techniques such
as CBD, CPD, GA and Shoestring are good for overhead but come
with a reduction in fault coverage. At the same time, there exist a
couple of techniques such as SEDSR and Checking rules which are
good for fault coverage with satisfactory overhead.

As error recovery is concerned, based on the identified
strengths and weaknesses from the methodology, we have found
that checkpointing technique for rollback error recovery is better
if memory overhead is the main concern. Checkpointing technique
for roll-forward error recovery schemes are better if time overhead
is the main concern.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work was funded by a technology transfer (TETRA) grant
from the Flemish government in Belgium (VLAIO), under grant
number IWT-150128 RELIM (Real-life immunity for embedded
systems).

References
[1] Feng S, Gupta S, Ansari A, Mahlke S. Shoestring: probabilistic soft error

reliability on the cheap: In: ACM SIGARCH Computer Architecture News.
[2] IEC 61508; Available from: http://www.iec.ch/functionalsafety/explained/.
[3] Li A, Hong B. Software implemented transient fault detection in space

computer. Aerospace science and technology 2007;11(2):245–52.
[4] Thati VB, Vankeirsbilck J, Boydens J. Comparative study on data error

detection techniques in embedded systems: In: 2016 XXV International
Scientific Conference Electronics (ET), Sozopol, Bulgaria.

[5] S. Jagannathan, Z. Diggins, N. Mahatme, T. D. Loveless, B. L. Bhuva, S-J.
Wen, R. Wong, and L. W. Massengill (ed.). Temperature dependence of soft
error rate in flip-flop designs: IEEE; 2012.

[6] R. Baumann. Soft errors in advanced computer systems 2005;22(3):258–66.
[7] Oh N, Mitra S, McCluskey EJ. ED 4 I: error detection by diverse data and

duplicated instructions. Computers, IEEE Transactions on 2002;51(2):180–
99.

[8] Reis GA, Chang J, Vachharajani N, Rangan R, August DI. SWIFT: Software
implemented fault tolerance: In: Proceedings of the international symposium
on Code generation and optimization.

[9] Seyyed Amir Asghari, Okyaya Kaynak, and Hassan Taheri. An investigation
into Soft Error Detection Efficiency at Operating System Level 2014.

[10] Dhiraj K. Pradhan, Nitin H. Vaidya: 24th International symposium on fault-
tolerant computing Papers: FTCS-24; 1994.

[11] Chris Inacio. Software Fault Tolerance; Available from:
https://users.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/.

[12] Abdi A, Asghari SA, Pourmozaffari S, Taheri H, Pedram H. An Optimum
Instruction Level Method for Soft Error Detection. International Review on
Computers and Software 2012;7(2).

[13] Oh N, Shirvani PP, McCluskey EJ. Error detection by duplicated instructions
in super-scalar processors. Reliability, IEEE Transactions on 2002;51(1):63–
75.

[14] Abdi A, Asghari SA, Pourmozaffari S, Taheri H, Pedram H. An Effective
Software Implemented Data Error Detection Method in Real Time Systems:
In: Advances in Computer Science, Engineering & Applications: Springer;
2012, p. 919–26.

[15] Chielle E, Kastensmidt FL, Cuenca-Asensi S. Overhead Reduction in Data-
Flow Software-Based Fault Tolerance Techniques: In: FPGAs and Parallel
Architectures for Aerospace Applications: Springer; 2016, p. 279–91.

[16] Arasteh B, Bouyer A, Pirahesh S. An efficient vulnerability-driven method
for hardening a program against soft-error using genetic algorithm.
Computers & Electrical Engineering 2015;48:25–43.

[17] Asghari SA, Abdi A, Taheri H, Pedram H, Pourmozaffari S, others. SEDSR:
soft error detection using software redundancy. Journal of Software
Engineering and Applications 2012;5(09):664.

[18] Oh N, McCluskey EJ. Error detection by selective procedure call duplication
for low energy consumption. Reliability, IEEE Transactions on
2002;51(4):392–402.

[19] Pradhan DK, Vaidya NH. Roll-Forward Checkpointing Scheme: A Novel
Fault-Tolerant Architecture. IEEE Trans. Comput. 1994;43(10):1163–74.

[20] Jie Xu B. Roll-forward error recovery in embedded real-time systems: 1996
international conference on parallel and distributed systems; 1996.

[21] Mohsen Bashiri, Seyed Ghassem Miremadi and Mahdi Fazeli (ed.). A
Checkpointing Technique for Rollback Error Recovery in Embedded
Systems: IEEE Xplore; 2006.

[22] Nicolescu B, Savaria Y, Velazco R. Software detection mechanisms
providing full coverage against single bit-flip faults. Nuclear Science, IEEE
Transactions on 2004;51(6):3510–8.

[23] Karnik T, Hazucha P. Characterization of soft errors caused by single event
upsets in CMOS processes. IEEE Trans.Dependable and Secure Comput.
2004;1(2):128–43.

[24] Arasteh B, Miremadi SG, Rahmani AM. Developing Inherently Resilient
Software Against Soft-Errors Based on Algorithm Level Inherent Features. J
Electron Test 2014;30(2):193–212.

[25] M. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou (ed.).
SWAT: An Error Resilient System; 2008.

[26] Vankeirsbilck J, Thati VB, Hallez H, Boydens J. Inter-block jump detection
techniques: A study: In: 2016 XXV International Scientific Conference
Electronics (ET), Sozopol, Bulgaria.

[27] Oh N, Shirvani PP, McCluskey EJ. Control-flow checking by software
signatures. Reliability, IEEE Transactions on 2002;51(1):111–22.

Error
 recovery

Strengths Weaknesses

Rollback
error

recovery

If the error is detected, the
processor state is restored into
error free state with out using
spare processor.

Time overhead is the main
drawback of the rollback error
recovery, because of its
rollback.

 RFR-RC Time overhead in RFR-RC
scheme is decreased.

Usage of a spare processor to
avoid the rollback, the cost is
getting high.

 RFR-BC RFR-BC scheme in roll-forward
recovery does not need a spare
processor as in RFR-RC to
avoid rollback.

Self-check detection has an
inaccurate error coverage and
can't detect certain types of
faults.

http://www.astesj.com/

Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017)

www.astesj.com 633

[28] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy and J.A. Abraham. Design and
evaluation of system-level checks for on-line control flow error detection
1999;10(6):627–41.

[29] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda and M. Violante (ed.).
Soft-error detection using control flow assertions: IEEE; 2003.

[30] Mei-Chen Hsueh, Tsai TK, Iyer RK. Fault injection techniques and tools.
Computer 1997;30(4):75–82.

[31] Nicolescu B, Velazco R. Detecting soft errors by a purely software approach:
method, tools and experimental results: In: Embedded Software for SoC:
Springer; 2003, p. 39–51.

[32] Rebaudengo M, Reorda MS, Torchiano M, Violante M. Soft-error detection
through software fault-tolerance techniques: In: Defect and Fault Tolerance
in VLSI Systems, 1999. DFT’99. International Symposium on.

[33] Cook JJ, Zilles C. A characterization of instruction-level error derating and
its implications for error detection: In: 2008 IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC (DSN),
Anchorage, AK.

[34] Wang N, Fertig M, Sanjay Patel. Y-branches: when you come to a fork in the
road, take it: In: 12th International Conference on Parallel Architectures and
Compilation Techniques. PACT 2003, New Orleans, LA, USA, 27 Sept.-1
Oct. 2003.

[35] Weiser M. Program slicing: In: Proceedings of the 5th international
conference on Software engineering.

[36] Dhiraj K. Pradhan, Nitin H. Vaidya. Roll-forward and rollback recovery:
performance-reliability trade-off 1994;43(10).

[37] Silva JG, Silva LM, Madeira H, Bernardino J. A fault-tolerant mechanism
for simple controllers: In: Goos G, Hartmanis J, Leeuwen J, Echtle K,
Hammer D, Powell D, editors. Dependable Computing — EDCC-1. Volume
852. Berlin, Heidelberg: Springer Berlin Heidelberg; 1994, p. 39–55.

[38] Fault Tolerance: Principles and Practice: Springer-Verlag New York Inc;
2013.

http://www.astesj.com/

	2. Related Work
	3. Data Flow Error Detection
	3.1. Full Duplication
	Error detection by duplicated instructions
	Strengths
	Weaknesses

	Error detection by diverse data and duplicated instructions
	Strengths
	Weaknesses

	Detecting soft errors by a pure software approach
	Strengths
	Weaknesses

	3.2. Selective Duplication
	Error detection by critical block duplication
	Strengths
	Weaknesses

	Error detection by critical path duplication
	Strengths
	Weaknesses

	Soft error detection using software redundancy
	Strengths
	Weaknesses

	Overhead reduction in data- flow software-based fault tolerance techniques
	Strengths
	Weaknesses

	Method for hardening a program against soft error using genetic algorithm
	Strengths
	Weaknesses

	Shoestring: Probabilistic soft error reliability
	Strengths
	Weaknesses

	4. Error Recovery
	4.1. Rollback Error Recovery
	Strengths
	Weaknesses

	4.2. Roll-Forward Error Recovery
	Roll-forward recovery with dynamic replication checks (with spare processor)
	Strengths
	Weaknesses

	Roll-forward recovery with behaviour-based checks (without spare processor)
	Strengths
	Weaknesses

	5. Future Work
	6. Conclusions
	Conflict of Interest
	Acknowledgment
	References

