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 This paper presents a literature review on data flow error detection and recovery 
techniques in embedded systems. In recent years, embedded systems are being used more 
and more in an enormous number of applications from small mobile device to big medical 
devices. At the same time, it is becoming important for embedded developers to make 
embedded systems fault-tolerant. To make embedded systems fault-tolerant, error detection 
and recovery mechanisms are effective techniques to take into consideration. Fault 
tolerance can be achieved by using both hardware and software techniques. This literature 
review focuses on software-based techniques since hardware-based techniques need extra 
hardware and are an extra investment in cost per product. Whereas, software-based 
techniques needed no or limited hardware. A review on various existing data flow error 
detection and error recovery techniques is given along with their strengths and weaknesses. 
Such an information is useful to identify the better techniques among the others.  
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1. Introduction  

In general, a critical aspect of any computer system is its 
reliability. Computers are expected to perform tasks not only 
quickly, but also correctly [1]. Recent trends in embedded systems 
attract industries to use them more and more in day-to-day life for 
an increasing number of applications. Application areas include, 
but are not limited to, mechatronic industries, medical equipment, 
smart energy consumers, mobility. Reduced size and reduced 
supply voltage make systems more susceptible to disturbances. 
Since there are more systems in use and the environment becomes 
more harsh, a system failure or a system crash is more likely to 
occur. A system failure could lead to serious consequences such as 
human injury, environment pollution and a huge amount of money 
loss for industries [2]. 

The rise in usage of electronics under harsh conditions 
significantly increases the probability of all kinds of disturbances 
from the environment. Such disturbances are glitches, 
electromagnetic interference, temperature variations, etc. [3–6]. It 
is proven that decreasing the size and supply voltage of the 
components in circuits and increasing their complexity leads to 
less reliable systems [7]. The corresponding systems are 
susceptible to soft errors (bit flips) which are typically transient. 
Transient faults do not cause any permanent physical damage and 
can be restored by overwriting the introduced bit flip or by a 
system restart. Still these faults are categorized as systematic faults 

since given the exact same circumstances these faults will re-
appear in exactly the same way. Because the environment changes, 
transient faults don’t occur continuously, unlike design and 
manufacturing faults [1,8,9]. 

Errors in embedded systems can cause unusual behavior and 
degrade systems integrity and reliability [7]. A number of 
hardware and software techniques have been developed to make 
embedded systems fault-tolerant against transient faults [10,11]. 
Fault tolerance is a two step process. The first step is fault 
detection, indicating that somewhere in the system fault has 
occurred. The second step in the process is fault recovery, restoring 
the system from fault state to the normal state [12]. 

Today, fault tolerance is mainly achieved via hardware 
solutions. Such hardware-based solutions are hardware 
redundancy approaches to meet the requirements of the reliability. 
Such hardware redundancy techniques are expensive since they 
have to be implemented on every product produced. A commonly 
used hardware-based technique for error detection in embedded 
systems is N-modular redundancy. This technique uses N (N>2) 
parallel modules for comparing the original and redundant process 
results. This hardware redundancy technique introduces 
a 100* (N- 1)% performance and memory overhead but does 
achieve a fault coverage of 100% [12,13]. To reduce the overheads 
in hardware-based fault tolerance techniques different software-
based redundant techniques have been proposed and 
implemented [12,13]. Such software solutions would lead to a 
more cost-efficient solution in many situations. Due to its 

ASTESJ 

ISSN: 2415-6698 

*Venu Babu Thati, KU Leuven; Spoorwegstraat 25; 8200 Brugge, Belgium 
Contact No: +32 (50)664805 & venubabu.thati@kuleuven.be 
 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017) 

www.astesj.com   

Special Issue on Recent Advances in Engineering Systems 

https://dx.doi.org/10.25046/aj020380  

http://www.astesj.com/
tel:+32%2050%2066%2048%2005
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020380


Thati VB et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 623-633 (2017) 

www.astesj.com     624 

flexibility and cost, software-based solutions are used in a number 
of applications. Software redundancy increases the system’s 
reliability but requires extra memory space and processing time to 
execute redundant instructions [15]. A number of software-based 
data error detection and recovery techniques have been proposed 
and implemented in literature for fault-tolerant embedded 
systems [1,7,8,12–22]. 

According to recent studies, soft errors are one of the primary 
sources of failure in embedded systems [7,16,23–25]. These soft 
errors (bit flips) may further affect the system during program 
execution, leading to a faulty system. Such bit flips have an effect 
on data flow or control flow of the program. Generally, data flow 
errors lead to corruption of variables in the program causing a 
wrong intermediate or output result. In contrast, control flow errors 
lead to a jump in the program execution order [26–29]. This review 
paper focuses on various data flow error detection and recovery 
techniques existing in literature to make embedded systems fault-
tolerant against bit flips. Since a number of data error detection and 
recovery techniques exist in literature, it is important to review and 
identify the strengths and weaknesses of each of these techniques 
for a fault-tolerant embedded system. Figure 1 gives an overview 
of the software-based data protection techniques that will be 
discussed in this paper. 

The remainder of this paper is organized as follows: Section 2 
describes and reviews the different data flow error detection 
techniques. Section 3 describes and reviews the different error 
recovery techniques. Section 4 provides future work plans and 
Section 5 concludes this paper. 
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Figure 1. Overview of software-based data protection techniques. 

2. Related Work 

Soft errors usually occur due to heavy radiation, power supply 
distortion, environmental temperature fluctuations, and other fac-
tors. The introduced soft errors can corrupt the data of the program 
in execution. To counter this data corruption, a number of data 
flow error detection and recovery techniques have been proposed 
in literature [1,7,8,12–17,19–21]. In previous work [4], we listed 
several data flow error detection techniques and discussed their re-
ported results. The contribution of this review paper is 1) that we 
list not only detection techniques but also recovery techniques, 2) 
that we discuss the considered techniques more in depth and 3) that 
we give several strengths and weaknesses per technique. The pro-
vided strengths and weaknesses have been determined based on 
the technique’s inner working and reported results. By looking at 

the strengths and weaknesses of each of the technique presented 
under error detection and error recovery, one can easily identify 
the better technique immediately with clear reasoning.  

3. Data Flow Error Detection 

This section presents and reviews various existing data flow 
error detection techniques such as EDDI (Error Detection by 
Duplicated Instructions), ED4I (Error Detection by Diverse Data 
and Duplicated Instructions), Software approach, CBD (Critical 
Block Duplication), CPD (Critical Path Duplication), SEDSR 
(Soft Error Detection using Software Redundancy), Checking 
rules, GA (Genetic Algorithm) and Shoestring approach. Strengths 
and weaknesses of each of these techniques will be discussed. All 
of the presented data flow error detection techniques are software-
based. 

Duplication is the basic mechanism involved in data error 
detection techniques [4]. A number of data flow error detection 
techniques have been developed based on a unique duplication 
mechanism for better fault coverage or lower overhead in terms of 
memory consumption. The duplication can be applied at various 
levels such as a full duplication and selective 
duplication [1,4,7,8,12–15,17,18]. Full duplication techniques and 
selective code duplication techniques are discussed in Sections 2.1 
and 2.2 respectively. 

In order to evaluate the data error detection techniques, authors 
of the corresponding techniques [1,7,12–17] have chosen various 
case studies for the experiments. Bubble sort, quicksort, insertion 
sort, and matrix multiplication are the most used case studies in 
previous research in this field [13,16,17,26,30]. Of course, some 
of the techniques uses other case studies such as FFT, differential 
equation solver, mean, vortex, etc. Further, a fault injection 
mechanism has been used to inject the faults in hardened case 
studies for validation. All of the provided information in Table 1 
and Table 3 such as error detection techniques, case studies, 
injected faults, detected faults, fault coverage, performance 
overhead, and memory overhead are considered from 
literature [1,7,12 – 17]. Fault coverage, performance overhead, 
and memory overhead are defined in (1), (2), and (3). 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

                                                     (1)   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

=
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
                                           (2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

=
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
                                                         (3)  

3.1. Full Duplication 

This section presents various existing full duplication 
techniques for data flow error detection. The basic mechanism 
involved in all of the full duplication techniques is duplicating the 
entire code and comparing the original and duplicated output to 
detect errors. Full code duplication has been performed in different 
ways for different techniques as in [7,13,15,31]. 

http://www.astesj.com/
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Table 1. Representation of error detection technique with case studies, case studies 
length, injected faults and detected faults from literature [1,7,12–17]. 

 
Error detection by duplicated instructions 

EDDI is one of the most often used error detection techniques 
in research [12]. The EDDI technique states three different 
instructions for program execution: a master instruction (MI), a 
shadow instruction (SI), and a comparison instruction (CI) [13], as 
shown in Figure 2b. Figure 2a represents two different master 
instructions. The master instruction is the original instruction of 
the source code, while the shadow instruction is the duplicated 
instruction added to the source code. Validation of correct 
operation is accomplished by comparing registers and memory 
values of master instructions and those of shadow instructions. In 
Figure 2b, first three instructions refer to MI, SI, and CI. If there is 
any mismatch between the master and shadow output, the 
comparison instruction reports an error. To achieve the highest 
fault detection ratio, EDDI is applied at the assembly level [8,13]. 
In order to evaluate the effectiveness of the proposed technique, 
quicksort, matrix multiplication, insertion sort, and FFT were used 
as case studies.  

 ADD   R3,         R1,        R2                               
  SUB    R4,         R3,        R2 

ADD   R3,         R1,        R2               
ADD   R23,       R21,      R22             
CMP   R3,        R23,      gotoError  
SUB    R4,         R3,        R2 
SUB   R24,        R23,      R22          
CMP   R4,        R24,      gotoError 

 
a) Original instructions        b) Transformed instructions 

Figure 2. Master, shadow, and comparison instructions representation. 

Strengths 
With the final computation results from MI and SI in the 

program, the error can be detected by placing a comparison 
instruction. The EDDI technique achieves nearly 98.8% [13,16] of 

fault coverage by placing a redundant comparison instruction after 
each MI and SI in the program. The remaining percentage of 
undetected errors comes from the faults that create an infinite loop 
in the program. EDDI is one of the techniques that has highest fault 
coverage in this field. 

Weaknesses 
Since it is a full duplication technique, all of the instructions 

presented in the program need to be duplicated. Next to the original 
(MI) and duplicated (SI) instructions, a comparison instruction has 
to be placed to report errors. Since each of the original instructions 
is converted to three instructions, so performance and memory 
overhead of EDDI are 104.7% and 200% [13,16], as shown in 
Table 3.  

Error detection by diverse data and duplicated instructions 

ED4I detects errors by executing two different programs, the 
original and a transformed (duplicated) program, and comparing 
their results. The comparison gives an error if the original and 
duplicated programs do not lead to the same result. The 
transformation of ED4I  technique representation is shown in 
Figure 3, where 𝑥𝑥′ =  𝑘𝑘. 𝑥𝑥 for integer numbers is used. Where k is 
the fault detection probability of the program, x is the original 
program and 𝒙𝒙′ is the transformed program [7]. In the presented 
ED4I technique, the optimum value for k that maximizes the fault 
coverage probability is calculated. After performing the 
validations with case studies, the authors identified that k = -2 is 
the optimum value to have a maximum fault detection. EDDI and 
ED4I techniques are comparable because of their common case 
stuides. 

a = 1;
b = 5;

       i  = 0;
       c = 0; 

i < 5

c = a + i * b;
i = i + 1;

i = 2 * c;

a =  -2;
  b = -10;

      i  =   0;
      c =   0; 

i > -10

c = -2a + -2(i * b);
i = -2i + (-2);

i = -2(2 * c);

K = -2

False False

True True

 
a) Original program        b) Transformed program 

Figure 3. Original and transformed program with k = -2. 

Strengths 
The ED4I technique presents a transformation algorithm for 

the program that transforms an original program (integers or 
floating point numbers) x to a new program 𝒙𝒙′ with diverse data. 
This technique achieves a 96.1% [7,16] fault coverage when using 
the optimum value for k. This result is approximately equal to that 
of the EDDI technique, as shown in Table 3.  

Weaknesses 
As in EDDI, ED4I also needs to duplicate the entire original 

program with diverse data. This technique requires a number of 
redundant instructions for duplication and comparison, which 
causes an increment in overhead. The performance and memory 
overhead imposed by this technique is nearly 126.6% 

Error 
detection 
technique 

Case studies 
used 

Case studies 
length 

(in lines) 

Injected 
faults 

Detected 
faults 

 
EDDI 

Insertion sort 
Quicksort   

Matrix mul. 

30 
36 
47 

500 
500 
500 

495 
491 
496 

 
ED4I 

Quick sort 
Matrix mul. 

Insertion sort 

47 
36 
30 

500 
500 
500 

479 
481 
482 

Software 
approach 

Constant mod-
ulus algorithm 

 
20 

 
19520 

 
19520 

 
CBD 

Bubble sort 
Matrix mul. 
Quick sort 

25 
36 
47 

784 
784 
784 

615 
561 
553 

 
CPD 

Differential 
equation solver 

 
30 

 
784 

 
575 

 
SEDSR 

Bubble sort 
Matrix mul. 
Quick sort 

25 
36 
47 

1000 
1000 
1000 

950 
940 
956 

Checking 
rules 

Bubble sort 
Matrix mul. 
Dijkstra’s 

25 
36 
19 

10000 
10000 
10000 

9560 
9600 
9350 

 
GA 

Bubble sort 
Regression 
Quicksort 

25 
23 
47 

40000 
40000 
40000 

32800 
32000 
33600 

 
Shoestring 

Vortex 
Crafty 
Gap 

SPEC2000 
benchmark 

suit 

12000 
12000 
12000 

11050 
6000 
9000 
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and 160% [16], as given in Table 3. ED4I transformation is only 
good for either integers or floating point numbers, but not for both. 
For example, if a program has mixed data types such as floating 
point numbers and integers, in that case, we need multiple 
transformations with different k values for each type. The 
drawback of such a multiple transformations is that it will 
introduce a more performance and memory overhead. 

Detecting soft errors by a pure software approach 

The error detection mechanism in the proposed technique is 
based on a set of transformation rules. These transformation rules 
are classified into three basic groups: 1) error affecting data, 2) 
error affecting basic instructions, and 3) error affecting control 
instructions to detect the errors [31]. Error affecting data rules are 
used to detect data flow errors, whereas error affecting basic and 
control instructions rules are used for control flow error detection. 
In error affecting data, the motive is to identify and define a 
dependency relationship between variables of the program. 
Furtherly, classifying them into intermediary variables and final 
variables based on their role in the program [31]. From Figure 4a, 
variables x, y, and z are classified as intermediary variables, which 
are used for other variables operation. Whereas variable P is 
classified as a final variable, which does not participate in any 
operations. After each write operation to the final variables, both 
original and duplicated values are compared for a consistency 
check, if any inconsistency is identified an error detection 
procedure is activated. By applying the different transformation 
rules to each of the original variables, this technique is able to 
detect errors that occur in data, basic instructions, and control 
instructions.  

x = z + y

P = x + y*2

 x1 = z1 + y1
 x2 = z2 + y2

P1 = x1 + y1*2
P2 = x2 + y2*2

P1 == P2

Error

True False

 
a) Original program        b) Transformed program 

Figure 4. Transformations rules targeting error affecting data in a sample program 
[31]. 

Strengths  
The presented technique is mainly based on a set of 

transformation rules. Error affecting data rules are used to detect 
data flow errors with full duplication scheme. Fault coverage 
achieved with this technique is 100% [31], because of duplicating 
the entire program and comparison after each write operation to 
the final variables. Software approach is one of the techniques that 
has highest fault coverage in this field. 

Weaknesses 
Usage of more redundant instruction for duplication and the 

comparison lead to increase in overhead. The appeared 

performance and memory overhead in this technique are 244% 
and 362% [31], as shown in Table 3. 

3.2. Selective Duplication 

This section presents a number of existing selective code 
duplication techniques for data flow error detection. The main 
difference with full duplication techniques is that selective 
duplication techniques first analyze the program to detect the most 
important parts and only duplicate those important parts. Defining 
and identifying the important part of a program can be done in 
different ways, leading to different techniques [1,12,14–17]. 

Error detection by critical block duplication 

The presented selective code duplication technique is named 
CBD. The CBD technique follows three different steps to detect 
data flow errors. The first step is, to identify the critical blocks in 
the control flow graph. These critical blocks are the most 
vulnerable in the program because its output has an influence on 
the other blocks. The second step is to duplicate the identified 
critical blocks. The final step is to compare the original and 
duplicated critical blocks to detect errors. The authors of this 
proposed technique introduced a simple way for critical block 
detection from the example of control flow graph, as shown in 
Figure 5. A block that has the most number of outgoing edges to 
the other blocks in the control flow graph is considered, as a 
critical block [12]. In Figure 5, block 1, has three outgoing edges 
to the other blocks, whereas others have less than three. In this 
case, the highlighted block 1 is identified as a critical block. 
Furthermore, the critical block, block 1, is duplicated and 
compared to the original block. If any mismatch is identified 
between the original and duplicated instructions, it will report an 
error. 

Strengths                                                                                                 
In Section 2.1, we have reviewed various full duplication 

techniques and their advances in fault coverage. But, because of 
increased performance and memory overhead, it seems that full 
code duplication is not a good option. Limiting the code 
duplication scope is useful in real-time and general purpose 
applications where cost is the primary factor. In CBD, performance 
and memory overhead are decreased because they use less 
redundant instructions for duplication and comparison. The 
appeared performance and memory overhead in this technique 
are 50% and 101.6% [12], as shown in Table 3.   

Weaknesses 
With regards to CBD, redundant instructions are inserted only 

in the critical block, so there is a possibility of missing undetected 
errors in other blocks leads to a reduction in fault coverage. The 
achieved fault coverage with CBD technique is only 73.5% [12]. 
Another major drawback of this technique is that it is a compiler 
and/or case study dependent and could just act as a full duplication 
technique. For example, let's consider a control flow graph with 8 
basic blocks, 5 of them have two outgoing branches and other 3 
have only one. Since 5 of them are critical blocks, they are 
expected to have at least 80% of the code. Such a control flow 
graph with CBD approach is duplicating 80% of the original 
program.                                                           

http://www.astesj.com/
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1

2 5

43

 
Figure 5. Example of control flow graph with CBD [12]. 

Error detection by critical path duplication 

In this CPD technique, the data flow graph is used instead of 
using the control flow graph. The data flow graph is used to derive 
the interconnection of variables and their dependencies and effects 
on each other. In a data flow graph example, nodes represent the 
operands and vertices represent the variables of the program, as 
shown in Figure 6 [14]. The basic idea behind this technique is to 
identify and duplicate the critical path in the data flow graph. The 
first step is, to identify the critical path in the data flow graph. The 
authors of [14,17,32] who proposed CPD technique introduced a 
simple principle for critical path detection. The longest path in the 
data flow graph is considered as a critical path because of the great 
possibility of error occurrence on that long path. According to the 
principle proposed by the authors, the longest path in the data flow 
graph is identified and kept in the box, as shown in Figure 6. Next, 
the identified critical path will be duplicated and the comparison 
instructions will be placed after each write operation in the final 
variables. If the final variables in the program are not equal to each 
other, it reports an error.  

1 2 6 9

* * -

+
+

10

X

Y

7

128

14

 
Figure 6. Example of data flow graph with CPD [14]. 

Strengths 
With regard to CPD, only instructions presented in the critical 

path are duplicated to detect the data flow errors with minimum 
overhead. In CPD, performance and memory overhead are 
decreased because they use less redundant instructions for 
duplication and comparison. The appeared performance and 
memory overhead in CPD are 60% and 103% [14], as shown in 
Table 3. 

Weaknesses 
As far as CPD is concerned, redundant instructions are inserted 

only in the critical path, so there is a possibility of missing out on 
the undetected errors in the other small paths in the data flow 
graph. This lead to reduce in a fault coverage. Fault coverage 
achieved with CPD is only 73.3% [14]. In CPD, creating a data 
flow graph is much harder in assembly than C and C++. It is also 
difficult to perform the duplication and maintain the control flow 
graph in order when only data flow graph is given.                                                               

Soft error detection using software redundancy 

This technique is named SEDSR. In this technique, the critical 
block is duplicated as in CBD. As in [12,17], the critical block is 
the block with the most number of outgoing edges to the other 
blocks in the control flow graph, as shown in Figure 5. In this 
technique, critical block variables are further divided into two 
categories: (1) middle variables: important in computing the other 
variables and (2) final variables: they don’t perform any 
computations [17]. In the critical block, a redundant comparison 
instruction is placed after the final variables to compare these 
parameters in original and duplicated blocks. Figure 7a represents 
the sample (original) program of the critical block and variables 
a, b, and c are considered as the middle variables and d is 
considered as the final variable. Figure 7b is the duplicated version 
of a sample program with comparison instruction for the critical 
block. If any mismatch between original and duplicated variables 
is identified during the comparison, an error is reported and the 
program execution is halted. SEDSR and CBD techniques are 
comparable because of their common case studies.                                                                                                  

c = f(b)

a = b + c

d = b-a*c

c1 = f(b1)
c2 = f(b2)

a1 = b1 + c1
a2 = b2 + c2

d1 = b1-a1*c1
d2 = b2-a2*c2

If(d1 != d2)
Error

 
a) Sample program                  b) Duplicated program 

Figure 7. Sample program of critical block with duplication and comparison [17]. 

Strengths 
SEDSR is one of the critical block duplication techniques. In 

comparison with CBD, in this technique, the critical block 
variables are not directly duplicated but furtherly classified into 
two types such as middle variables and final variables. In SEDSR, 
by placing a comparison instruction after writing to the classified 
final variables detect a lot of errors. Fault coverage achieved with 
this technique is 94.85% [17], which is increased in comparison to 
the CBD, as shown in Table 3. 
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Weaknesses 
As in CBD, this technique also considers only the critical block 

with further improvements in the process over CBD, as mentioned 
in strengths. At the same time, performance and memory overhead 
are increased because of placing extra comparison instructions. 
The imposed performance and memory overhead in SEDSR 
are 112.3% and 134.6% [17], they are increased in comparison to 
the CBD. Since SEDSR has a similar kind of duplication 
mechanism as in CBD, this technique is also a compiler and/or 
case study dependent and could just act as a full duplication.  

Overhead reduction in data- flow software-based fault toler-
ance techniques 

The aim of this technique is to provide low overhead with the 
same level of reliability as in EDDI, ED4I , and Software 
approach [7,13,31]. This technique provides an alternative 
implementation of software-based techniques. The alternative 
overcomes the drawback of the massive overhead introduced by 
other techniques for soft error detection. In the presented 
technique, a set of rules for the data protection are explained as 
shown in Table 2 such as, 1) global rules: each register used in the 
program should have its replica, 2) duplication rules: (a) 
duplicating all instructions except branches, (b) duplicating all 
instructions except branches and stores, and 3) checking rules: to 
compare the values of a register with its replica at different 
positions [15]. Such rules are applied to various methods with the 
choice to detect the errors. Table 2 explains the purpose of each 
rule. Checking rules (overhead reduction), EDDI, and ED4I 
techniques are comparable because of their common case studies.  

Table 2. Checking rules description [15]. 

 

Strengths 
Different methods are implemented in this technique by 

considering the choice of duplication and checking rules, as shown 
in Table 2. A couple of methods have equal fault coverage with 
changes in overhead. Selecting the right checking rules is 
important because they have an influence on fault coverage and 
overhead. The method with highest fault coverage and lower 
overheads is considered as the best method. In this technique, the 
best method has a fault coverage of 95% with performance and 
memory overhead of 72.3% and 82% [15]. The appeared 
performance and memory overhead in this technique are decreased 
in comparison to the EDDI, and ED4I techniques, as shown in 
Table  3.  

Weaknesses 
Compared to full duplication error detection techniques such 

as EDDI, and ED4I , this technique has slightly reduced fault 
coverage. Fault coverage achieved with this technique is 95% 
because of using less number of redundant instructions with the 
choice of checking rules in comparison to the EDDI and 
ED4I techniques. 

Method for hardening a program against soft error using ge-
netic algorithm 

In this technique, GA has been used to identify the most 
vulnerable blocks of the program through input data [16]. The 
identified vulnerable blocks have to be strengthened against errors 
through duplication and comparison. The proposed technique 
follows three different steps to detect errors as shown in Figure 8. 
Those three steps are, 1) preprocessing of the input program: with 
regard to the results obtained from the related researchers such 
as [33,34], a considerable number of program instructions does not 
have any effect on the program output results. This step includes a 
method called program slicing [35], which eliminates some of 
those instructions that do not have an impact on the program output 
results. The first step improves the speed of proposed GA in the 
second step, 2) identifying the most vulnerable blocks: GA has 
been proposed to identify vulnerable blocks. GA takes the source 
code of the program as an input to find out the smallest subset of 
the basic blocks which are more vulnerable. The most vulnerable 
blocks are identified based on initial population, selection, 
crossover, mutation, evaluation, and replacement processes 
introduced in GA, as clearly explained in [16], and 3) 
strengthening the identified vulnerable blocks: based on the 
required level of reliability, most vulnerable blocks in the program 
are strengthened against errors [16], is shown in Figure 8.  

Preprocessing of 
the input 
program 
(Slicing)

Identifying the 
vulnerable 

blocks by the 
GA

Strengthening 
the identified 

vulnerable 
blocks

Sliced
 program

Vulnerable 
blocks

 of the program

Step 1 Step 2 Step 3

Input
data

Original
Program
C/C++

 
Figure 8. Representation of proposed method [16]. 

Strengths 
Due to initial preprocessing and then selective vulnerable block 

duplication and comparison, the presented technique uses a less 
number of redundant instructions. Usage of a less number of 
redundant instructions decreases its performance and memory 
overhead. Performance and memory overhead presented in this 
technique are 24.3% and 60.3% [16]. 

Weaknesses 
As other selective duplication techniques presented in this 

section, this technique considers only the most vulnerable blocks 
in the program for duplication. By duplicating only the vulnerable 
blocks in the program, most of the faults can be detected but not 
all. There is a possibility of undetected errors in the other normal 
blocks which lead to a reduction in fault coverage. Fault coverage 
achieved with this is technique is 82% [16].  

Shoestring: Probabilistic soft error reliability 

In the program, any instruction that can potentially influence 
global memory is considered as a high-value instruction [1]. In 
fact, if it consumes a wrong input, they are likely to produce 
outputs that result in user-visible corrupted results. In this 

Global rules  (Valid for all techniques) 
G1 Each register used in the program has a spare register as a 

replica 
Duplicated rules Performing the same operation on the registers replica 

D1 All instructions except branches 
D2 All instructions except branches and stores 

Checking rules Compare the value of a register with its replica 
C1 Before each read on the register 
C2 After each write on the register 
C3 Before loads, the register that contains the address 
C4 Before stores, the register that contains the data 
C5 Before stores, the register that contains the address 
C6 Before branches 
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technique, high-value instructions are defined as the most 
vulnerable instructions and will have a huge impact on program 
output. Shoestring technique contributes in different issues for 
detecting the errors. Such issues are: 1) a transparent software 
solution for addressing soft errors, 2) a new reliability-aware 
compiler analysis, and 3) a selective instruction duplication that 
leverages compiler to identify and duplicate a small subset of 
vulnerable instructions [1]. Code duplication begins by selecting a 
single high-value instruction, from the set of all high-value 
instructions in the program. The selected single high-value 
instruction then proceeds to duplicate and then compare with 
comparison instruction. Duplication process is terminated when no 
more producers exist for duplication or the producer is already 
duplicated. Then the inserted comparison instructions are used for 
checking the errors. In Figure 9, the shaded parts represent the 
code duplication chains and the dashed circles indicate high-value 
instructions. 

Strengths 
Shoestring is a minimally invasive software solution, which 

results in very low overhead. Since duplicating and comparing 
only high-valued instructions, less number of redundant 
instructions are used which leads to decrease in overhead. 
Performance and memory overhead introduced in this technique 
are 20.16% and 40% [1], these are better than any other techniques 
in this field. 

Weaknesses 
Shoestring approach initially identifies the most unsafe 

instructions, as high-value instructions. Only duplicating and 
comparing the high-valued instructions, produce better overhead. 
At the same time, fault coverage is reduced because of possible 
undetected errors in the unduplicated instructions. Fault coverage 
achieved with this technique is 80.6 [1]%.   

S

43

7

S

5

8

S

2

1

6

 
Figure 9. Example of data flow graph illustrating shoestrings code duplication 

chains [1]. 

4. Error Recovery 

Error recovery techniques have been implemented to recover 
from the identified errors to keep systems in an error-free state with 
minimum overhead. Error recovery is generally based on the 
checkpointing concept [19–21,36]. Checkpoints are saved at 

regular intervals in the program based on the program execution 
behavior. 

This section presents and reviews general checkpointing 
techniques for rollback error recovery and roll-forward error 
recovery. Strengths and weaknesses of rollback and roll-forward 
error recovery policies with checkpointing techniques are 
discussed. 

4.1. Rollback Error Recovery 

Rollback error recovery is one of the most used error recovery 
policies to recover the errors by using the checkpointing 
techniques in embedded systems. Bashiri, et al. propose a 
checkpointing technique for rollback error recovery. In rollback 
error recovery, in the case of an error, the processor state is restored 
to the error-free state with lower overhead [21]. In general, cost, 
performance, and memory overhead are primary factors for any 
error recovery technique. 

The primary step for developing an error recovery technique is 
defining the correct error model. In [21], the proposed technique is 
based on control flow error model. During compilation time, the 
program is partitioned into basic blocks. The basic block is a set of 
instructions in a program without a jump instruction. Thereafter, 
an error detection mechanism needs to be added to the basic blocks 
presented in the program. Figure 10 shows the example of placing 
checkpoints in the control flow graph of the program. Usually, the 
checkpoint is stored in memory for rolling back the system with an 
immediate effect whenever an error is detected. Such a memory 
must be a fault-tolerant memory. The checkpoint contains the 
content of the registers, stack pointer and memory locations like 
stack region, constants, and variables [21]. For the considered 
benchmark programs such as bubble sort, matrix multiplication, 
and linked list copy, a checkpoint capturing is inserted to each of 
the basic blocks individually. 

For example, a control flow graph is constructed with six 
blocks based on the program. Then checkpoints are added to the 
blocks based on the program execution order as shown in 
Figure 10. Since there will be a possibility of error occurrence 
before the first checkpoint location, it is mandatory to put a 
checkpoint at the beginning of the program. Remaining 
checkpoints are placed at the locations based on the program's 
vulnerability. In Figure 10, locations of the second and third 
checkpoints contain the vulnerable information. During the 
program execution time, whenever an error is detected, a detection 
mechanism informs the recovery routine and recovery routine 
recovers the error from the previously restored checkpoint. To 
evaluate the presented checkpointing technique, a pre-processor 
has been implemented that selects and adds the checkpoints to 
blocks [21]. 

Strengths  
Bashiri, et.al, proposes a general checkpointing technique for 

rollback error recovery to recover from detected errors. The 
advantage of rollback error recovery is that if the error is detected, 
the processor state is restored into error free state without using the 
spare processor. The number of redundant instructions needed for 
rollback error recovery is very low. In the presented checkpointing 
technique for rollback error recovery,  appeared memory overhead 
is low and also a cost efficient. 

Weaknesses 
In the presented checkpointing technique for rollback error 

recovery, whenever an error is detected, immediately the system 
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must rollback to its previous checkpoint of the corresponding 
program. Due to the fact that considerable time overhead is the 
main drawback of the rollback error recovery, as shown in Table 4. 
This technique is not fit for the typical time critical applications. 

1

3

2

4

6

5

First checkpoint capturing

Second checkpoint 
capturing

Third checkpoint capturing  
Figure 10. Periodic checkpointing representation in control flow graph. 

4.2. Roll-Forward Error Recovery 

Roll-forward error recovery is another error recovery policy to 
recover the errors. Roll-forward schemes are developed to increase 
the possibility that a given process completes within a given time. 
In that case, a couple of roll-forward schemes uses a spare 
processor for removing the rollback to save the time. At the same 
time, in time critical applications, redundancy is an important 
factor to consider because of cost, power, memory, and other 
factors. However, both schemes for roll-forward recovery with and 
without spare processor are discussed in this section. 

Roll-forward recovery with dynamic replication checks (with 
spare processor) 

The presented roll-forward recovery scheme uses dynamic rep-
lication checks to detect errors and is named RFR-RC (Roll-For-
ward Recovery with dynamic Replication Checks). This scheme is 
organized based on the isolated checkpoint intervals. For any iso-
lated checkpoint intervals, a task is executed on two independent 
processors such as processor P1 and processor P2 as shown in Fig-
ure 11 [20]. In the presented scheme, at every checkpoint, the 
duplicated task records its state in the storage and the recorded state 
is forwarded to the checkpoint processor. Thereafter, at the end of 
the checkpoint interval, the checkpoint processor compares the two 
states from the processors. If the compared checkpoint states 
match with each other, the checkpoint will be committed and both 
the processors P1 and P2 continue their executions into the next 
checkpoint interval [20,21]. During the comparison, if any 
mismatch is detected, a validation step starts immediately. During 
the validation process, processors P1 and P2 continue their 
execution. At the same time, a spare processor is occupied to retry 
the last checkpoint interval using the previously committed 
checkpoint. Once the spare processor is ready with its process, the 
state is compared with the previous states of processors  P1 and P2. 
The faulty processor among two processors such as P1 and P2 will 
be identified after this comparison. Then the identified faulty pro-
cessor state will be made identical to that of the other processor. 
Now, both processors duplicating the task need to be in the correct 

state. As from the assumption [20] of single independent faults, a 
further validation process is not required. 

Strengths  
In the presented RFR-RC scheme, a spare processor is used to 

save time. With an extra processor, there is no need of rolling back 
to restore the system from error state. In RFR-RC, during the 
validation, the spare processor is used to identify the faulty 
processor and recovery action will be taken immediately. 
Appeared time overhead in RFR-RC scheme is decreased in 
comparison to the rollback scheme and RFR-BC scheme, as shown 
in Table 4.  

Weaknesses 
Because of using a spare processor to avoid the rollback, the 

cost is getting high. Memory overhead appeared in this technique 
is increased in comparison to the rollback recovery scheme.    

Processor P1

Processor P2

Copy state from 
P1 to P2

Validation step

Isolated checkpoint intervals

Comparison

Comparison

Copy

Spare 
processor

Different 
checkpointsA fault

 
Figure 11. Roll-forward recovery in RFR-RC scheme [19,20]. 

Roll-forward recovery with behaviour-based checks (without 
spare processor) 

In order to avoid the rollback, self-checks have been inserted 
to identify the faulty processors [20]. Such a self-detection 
methods are behaviour-based checks, such as control flow 
monitoring, detecting an illegal instruction, and memory 
protection. In [20,37], a new scheme has been proposed and 
implemented for roll-forward recovery named RFR-BC (Roll-
Forward Recovery with Behavior based Checks). The proposed 
scheme uses a process pair approach to avoid the rollback to reduce 
the time. The intuitive idea presented in this scheme is, whenever 
an active task fails, the spare task becomes active to provide the 
necessary services [20]. The information sending through the 
active and spare task do not differ. However, information passing 
through the spare task need to be verified by the acceptance test 
before sending. Thereafter, the states of two processors 
(processor1 and processor 2) are verified at the end of a checkpoint 
interval to declare passing the test is committed, as shown in 
Figure 12.  

Basically, acceptance test for sending the information validates 
a couple factors such as timing, coding, reasonableness, structural 
and diagnostic checks [20,38]. In the presented scheme, 
checkpointing is used for fault identification and roll-forward error 
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recovery. Whenever a faulty processor is located, then its state is 
made identical to the checkpoint state of the error-free processor. 
Because of this, both processors (processor1 and processor 2) will 
be in the correct state at the beginning of the next checkpoint 
interval. Figure 12 demonstrates the REF-BC scheme. 

Strengths 
RFR-BC scheme in roll-forward recovery does not need a 

spare processor as in RFR-RC to avoid rollback. In the RFR (Roll-
Forward Recovery) schemes, the continuity of the executing 
program will be maintained so that the recovery delay will be 
removed [20,21]. The advantage of RFR-BC scheme is that time 
overhead is decreased in comparison to the rollback scheme, as 
shown in Table 4. It is also a more cost efficient solution compared 
to RFR-RC because of no spare processor.  

Table 3. Results of the presented data error detection techniques from literature 
[1,7,12–17]. 

 

Table 4. Results of the presented error recovery techniques from 
literature [19– 21,36]. 

Method Time overhead 
Rollback recovery 31.1% 
Roll-forward recovery (RFR-RC) 1.23% 
Roll-forward recovery (RFR-BC) 2.08% 

 

Weaknesses 
In the RFR-BC, appointed self-check detection has an 

inaccurate error coverage and can't detect certain types of faults 
such as faults causing infinite looping. Time overhead with 

RFR- BC scheme is increased in comparison with the RFR-RC 
scheme for roll-forward recovery. 

Processor P1

Processor P2

Copy state 
from P1 to P2

Different 
checkpointsA fault

(Pass tests and 
commited)

Checkpoint intervals

Fail the test Pass the test

 
Figure 12. Roll-forward recovery in RFR-BC scheme [19,20]. 

Table 5. Strengths and weaknesses comparison of error detection methods. 

 

Error 
detection 
technique 

Case studies 
used 

Fault 
coverage 

(%) 

Performance 
overhead 

(%) 

Memory 
overhead 

(%) 
 

EDDI 
Insertion sort 

Quicksort   
Matrix mul. 
(Average) 

99 
98.2 
99.2 

(98.8) 

113.90 
89.3 
111.1 

(104.7) 

200 
200 
200 

(200) 
 

ED4I 
Quicksort 

Matrix mul. 
Insertion sort 

(Average) 

96.4 
95.9 
96.2 

(96.1) 

110 
133 
137 

(126.6) 

164 
170 
146 

(160) 
Software 
approach 

Constant mod-
ulus algorithm 

 
100 

 
244 

 
362 

 
CBD 

Bubble sort 
Matrix mul. 
Quicksort 
(Average) 

78.54 
71.53 
70.57 
(73.5) 

51 
57 
42 

(50) 

94 
109 
102 

(101.6) 
 

CPD 
Differential 

equation 
solver 

 
73.3 

 
60 

 
103 

 
SEDSR 

Bubble sort 
Matrix mul. 
Quicksort 
(Average) 

95.01 
93.95 
95.59 

(94.85) 

112 
121 
104 

(112.3) 

127 
146 
131 

(134.6) 
 

Checking 
rules 

Bubble sort 
Matrix mul. 
Dijkstra’s 
(Average) 

95.6 
96 

93.5 
(95) 

70 
82 
65 

(72.3) 

82 
89 
75 

(82) 
 

GA 
 

Bubble sort 
Regression 
Quicksort 
(Average) 

82 
80 
84 

(82) 

23 
24 
26 

(24.3) 

64 
57 
60 

(60.3) 
 

Shoestring 
Vortex 
Crafty 
Gap 

(Average) 

92 
75 
75 

(80.6) 

12 
24 

24.5 
(20.16) 

31 
48 
41 

(40) 

Error  
detection 
technique 

Strengths Weaknesses 

EDDI The EDDI technique achieves 
high fault coverage by placing a 
comparison instruction after 
each MI and SI in the program. 

Each of the original 
instruction is converted into 
three instructions, so 
performance and memory 
overhead is increased. 

ED4I This technique achieves a high 
fault coverage when using the 
optimum value for k.  

Good for either integers or 
floating point numbers, but 
not for both.  

Software 
approach 

Fault coverage achieved with 
this technique is very high 
because of duplicating the entire 
program.  

More number of required 
instructions for duplication 
and comparison lead to 
increase in overhead.  

CBD Performance and memory 
overhead are decreased because 
they use less redundant 
instructions for duplication  

This technique is  a compiler 
and/or case study dependent 
and could just act as a full 
duplication technique.  

CPD Due to less number of instruc-
tions required for duplication, 
performance and memory over-
head is decreased. 

In CPD, creating a data flow 
graph is much harder in 
assembly than C and C++.  

SEDSR In SEDSR, by placing a 
comparison instruction after 
writing to the classified final 
variables detect a lot of errors.  

This technique is also a 
compiler and/or case study 
dependent and could just act 
as a full duplication.  

Checking 
rules 

The appeared performance and 
memory overhead in this 
technique are decreased in 
comparison to the EDDI, and 
ED4I techniques.  

Fault coverage achieved with 
this technique is reduced 
because of using less number 
of redundant instructions with 
the choice of checking rules. 

GA Because of selective vulnerable 
block duplication, the presented 
technique uses a less number of 
redundant instructions. 

There is a possibility of 
undetected errors in the other 
normal blocks which lead to a 
reduction in fault coverage.  

Shoestring By duplicating and comparing 
only high-valued instructions, 
leads to decrease in overhead. 

Fault coverage is reduced 
because of the possible 
undetected errors in the 
unduplicated instructions.  
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Table 6. Strengths and weaknesses comparison of error recovery methods. 

 
5. Future Work 

The strengths and weaknesses given in this paper for each tech-
nique were determined theoretically, by analyzing the technique 
and determining what data flow errors they detect, which they ne-
glect and which overhead the techniques introduce. 

To guide researchers and embedded systems engineers, we will 
perform an experimental comparison of the mentioned techniques. 
This experimental comparison will allow to evaluate the tech-
niques on the same base: same hardware, same case studies, and 
same fault injection process. We’ll perform this comparison both 
for data flow detection techniques and data flow recovery tech-
niques. The outcome of the experimental comparison will allow 
other applicants of the techniques to quickly determine which ex-
isting technique is the best, in general or for their application. 

Finally, we’ll use the gathered data from the experimental com-
parison to develop a technique that can detect and recover from 
data flow errors, without introducing abnormal overhead. 

6. Conclusions 

This review paper lists and reviews various data flow error 
detection and recovery techniques existing in literature in the field 
of embedded systems. Each of the considered data error detection 
and correction technique has been discussed in terms of strengths 
and weaknesses. The discussion is summarized in Tables 5 and 6. 

After thoroughly reviewing the strengths and weaknesses of 
error detection techniques, we have found that some of the 
techniques such as 𝐸𝐸𝐸𝐸4𝐼𝐼, EDDI and Software approach are good 
for fault coverage but come with high overhead both in memory 
and performances. On the other hand, some other techniques such 
as CBD, CPD, GA and Shoestring are good for overhead but come 
with a reduction in fault coverage. At the same time, there exist a 
couple of techniques such as SEDSR and Checking rules which are 
good for fault coverage with satisfactory overhead.  

As error recovery is concerned, based on the identified 
strengths and weaknesses from the methodology, we have found 
that checkpointing technique for rollback error recovery is better 
if memory overhead is the main concern. Checkpointing technique 
for roll-forward error recovery schemes are better if time overhead 
is the main concern. 
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